EMC TEST REPORT

For

Shenzhen Filmbase Technology Co., Ltd.

PDLC Smart Film Smart Galss

Test Model: FB-500W-60V

Additional Model No.: Please Refer To Page 9

Prepared for : Shenzhen Filmbase Technology Co., Ltd.

Address : 3103/31F, 3A Building, Smart Park, Baolong, Longgang,

Shenzhen, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.
Address : Room 101, 201, Building A and Room 301, Building C,

Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao' an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : August 24, 2021

Number of tested samples : 1

Serial number : Prototype

Date of Test : August 24, 2021 ~ September 03, 2021

Date of Report : September 06, 2021

EMC TEST REPORT

EN 55032:2015+A11:2020

Electromagnetic compatibility of multimedia equipment - Emission Requirements

EN 55035:2017+A11: 2020

Electromagnetic compatibility of multimedia equipment – Immunity requirements

Report Reference No.: : LCS210706140AE

Date of Issue.....: September 06, 2021

Testing Laboratory Name..... : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : Room 101, 201, Building A and Room 301, Building C, Juji

Industrial Park, Yabianxueziwei, Shajing Street, Bao' an

District, Shenzhen, Guangdong, China

Testing Location/ Procedure... : Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method

Applicant's Name.....: : Shenzhen Filmbase Technology Co., Ltd.

Address : 3103/31F, 3A Building, Smart Park, Baolong, Longgang,

Shenzhen, China

Test Specification

Standard : EN 55032:2015+A11:2020

EN 55035:2017+A11: 2020 EN IEC 61000-3-2:2019

EN 61000-3-3: 2013+A1:2019

Test Report Form No. : LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF..... : Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.: : PDLC Smart Film Smart Galss

Trade Mark Filmbose

Test Model : FB-500W-60V

Ratings Input: AC 100-240V, 50Hz, 500W

Output: AC 60V, 1667mA, Max, 500W

Result: : Positive

Compiled by:

Erma War

Supervised by:

Baron Wen

Gavin Liang/ Manager

Approved by:

Emma Wang/ File administrators

Baron Wen/Technique principal

EMC -- TEST REPORT

September 06, 2021 Test Report No.: LCS210706140AE Date of issue

Test Model..... : FB-500W-60V EUT.....: PDLC Smart Film Smart Galss Applicant.....:: Shenzhen Filmbase Technology Co., Ltd. Address.....: 3103/31F, 3A Building, Smart Park, Baolong, Longgang, Shenzhen, China Telephone....::/ Fax.....: : / Manufacturer.....: Shenzhen Yuguang New Material Co., Ltd. Address......: 202/ 2/F, Building 3, Huaqiang Industrial Logistics Park, No. 43 Qingfeng Avenue, Longgang District, Shenzhen City, Guangdong Province, China Telephone.....:: : / Fax.....::/ Factory.....: Shenzhen Yuguang New Material Co., Ltd. Address......: 202/ 2/F, Building 3, Huaqiang Industrial Logistics Park, No. 43 Qingfeng Avenue, Longgang District, Shenzhen City, Guangdong Province, China Telephone.....:: : / Fax.....:: /

Test Result Positive

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	September 06, 2021	Initial Issue	Gavin Liang

TABLE OF CONTENTS

Test Report Description	Page
1. TEST STANDARDS	6
2.SUMMARY OF STANDARDS AND RESULTS	7
2.1. DESCRIPTION OF STANDARDS AND RESULTS	
3. GENERAL INFORMATION	9
3.1. DESCRIPTION OF DEVICE (EUT)	9 9 10
4. MEASURING DEVICES AND TEST EQUIPMENT	
5. TEST RESULTS	
5.1. POWER LINE CONDUCTED EMISSION MEASUREMENT	
5.6. RF FIELD STRENGTH SUSCEPTIBILITY TEST	21
5.7. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	
5.8. SURGE IMMUNITY TEST 5.9. INJECTED CURRENTS SUSCEPTIBILITY TEST	
5.10. MAGNETIC FIELD SUSCEPTIBILITY TEST 5.11. VOLTAGE DIPS AND INTERRUPTIONS TEST	29
ANNEX A	31
ANNEX B	35
ANNEX C	51

1. TEST STANDARDS

The tests were performed according to following standards:

<u>EN 55032:2015+A11:2020</u> Electromagnetic compatibility of multimedia equipment - Emission Requirements

<u>EN 55035:2017+A11: 2020</u> Electromagnetic compatibility of multimedia equipment – Immunity requirements

EN IEC 61000-3-2:2019 Electromagnetic compatibility (EMC) -- Part 3-2: Limits - Limits for harmonic current emissions (equipment input current up to and including 16 A per phase) EN 61000-3-3: 2013+A1:2019 Electromagnetic compatibility (EMC) -- Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤ 16 A per phase and not subject to conditional connection

2.SUMMARY OF STANDARDS AND RESULTS

2.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

Emission (EN 55032:2015+A11:2020)							
Description of Test Item	Standard	Limits	Results				
Conducted disturbance at mains terminals	EN 55032:2015+A11:2020	Class B	PASS				
Conducted disturbance at telecommunication port	EN 55032:2015+A11:2020	Class B	N/A				
Radiated disturbance	EN 55032:2015+A11:2020	Class B	PASS				
Harmonic current emissions	EN IEC 61000-3-2:2019	Class A	PASS				
Voltage fluctuations & flicker	EN 61000-3-3: 2013+A1:2019		PASS				
	munity (EN 55035:2017+A11:						
Description of Test Item	Basic Standard	Performance Criteria	Results				
Electrostatic discharge (ESD)	EN 61000-4-2: 2009	В	PASS				
Radio-frequency, Continuous radiated disturbance	EN 61000-4-3: 2006+A2: 2010	А	PASS				
Electrical fast transient (EFT)	EN 61000-4-4: 2012	В	PASS				
Surge (Input a.c. power ports)	EN 61000-4-5: 2014+A1: 2017	В	PASS				
Surge (Telecommunication ports)	EN 61000-4-5. 2014+A1. 2017	В	N/A				
Radio-frequency, Continuous conducted disturbance	EN 61000-4-6: 2014+A1:2015	А	PASS				
Power frequency magnetic field	EN 61000-4-8: 2010	А	PASS				
Voltage dips, >95% reduction		В	PASS				
Voltage dips, 30% reduction	EN IEC 61000-4-11:2020	С	PASS				
Voltage interruptions		С	PASS				
***Note: N/A is an abbreviat	ion for Not Applicable.						

Test mode:		
Mode	Working	Record

2.2. Description of Performance Criteria

General Performance Criteria

Examples of functions defined by the manufacturer to be evaluated during testing include, but are not limited to, the following:

- essential operational modes and states;

2.2.1. Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacture when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deriver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

2.2.2. Performance criterion B

After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacture, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operation state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be deriver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

2.2.3. Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacture's instructions.

Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be loss.

3. GENERAL INFORMATION

3.1. Description of Device (EUT)

EUT : PDLC Smart Film Smart Galss

Trade Mark : Filmbase Mark Class Do Mare

Test Model : FB-500W-60V

Additional Model : FB-100W-60V, FB-020W-60V, FB-030W-60V, FB-050W-60V,

FB-200W-60V, FB-300W-60V

Model Declaration : PCB board, structure and internal of these model(s) are the same, So

no additional models were tested

Power Supply : Input: AC 100-240V, 50Hz, 500W

Output: AC 60V, 1667mA, Max, 500W

Highest internal freq. : Fx≤108MHz

Highest internal frequency (Fx)	Highest measured frequency
Fx ≤ 108 MHz	1 GHz
108 MHz < Fx ≤ 500 MHz	2 GHz
500 MHz < Fx ≤ 1 GHz	5 GHz
Fx > 1 GHz	5 x Fx up to a maximum of 6 GHz

NOTE 1 For FM and TV broadcast receivers, Fx is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

NOTE 2 Fx is defined in EN 55032 Section 3.1.19.

Where Fx is unknown, the radiated emission measurements shall be performed up to 6 GHz

3.2. Support Equipment List

Name	Manufacturers	M/N	S/N
		-	

3.3. Description of Test Facility

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

3.4. Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

3.5. Measurement Uncertainty

Test Parameters		Expanded uncertainty (U _{lab})	Expanded uncertainty (U _{cispr})
Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 2.63 dB ± 2.35 dB	± 3.8 dB ± 3.4 dB
Power Disturbance	Level accuracy (30MHz to 300MHz)	± 2.90dB	± 4.5 dB
Electromagnetic Radiated Emission (3-loop)	Level accuracy (9kHz to 30MHz)	± 3.60 dB	± 3.3 dB
Radiated Emission	Level accuracy (9kHz to 30MHz)	± 3.68 dB	N/A
Radiated Emission	Level accuracy (30MHz to 1000MHz)	± 3.48 dB	± 5.3 dB
Radiated Emission	Level accuracy (above 1000MHz)	± 3.90 dB	± 5.2 dB
Mains Harmonic	Voltage	± 0.510%	N/A
Voltage Fluctuations & Flicker	Voltage	± 0.510%	N/A
EMF	/	± 21.59%	N/A

¹⁾ Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

²⁾ The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

4. MEASURING DEVICES AND TEST EQUIPMENT

LINE CONDUCTED EMISSION								
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date		
1	EMI Test Software	EZ	EZ-EMC	/	N/A	N/A		
2	EMI Test Receiver	R&S	ESR3	102312	2021-03-16	2022-03-15		
3	Artificial Mains	R&S	ENV216	101119	2021-06-21	2022-06-20		
4	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-003 2	2021-06-21	2022-06-20		
5	Impedance Stabilization Network	TESEQ	ISN T800	45130	2020-12-02	2021-12-01		

RADIATED DISTURBANCE								
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date		
1	EMI Test Software	E3	E3-EMC	/	N/A	N/A		
2	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2021-07-25	2024-07-24		
3	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2021-07-01	2024-06-30		
4	EMI Test Receiver	R&S	ESR3	102311	2021-06-21	2022-06-20		
5	Broadband Preamplifier	/	BP-01M18G	P190501	2021-06-21	2022-06-20		

VOLTAGE FLUCTUATION AND FLICKER/HARMONIC CURRENT EMISSIONS								
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date		
1	Power Analyzer Test System	Voltech	PM6000	200006700523	2021-06-21	2022-06-20		

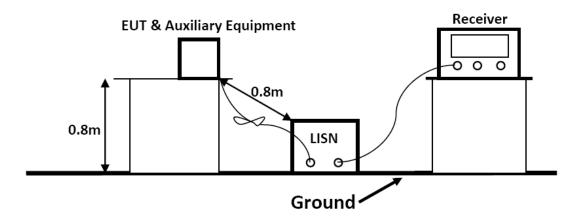
ELECTROSTATIC DISCHARGE							
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date	
1	ESD Simulator	SCHLODER	SESD 230	604035	2021-07-20	2022-07-19	

RF EL	RF ELECTROMAGNETIC FIELD)					
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	ESG Vector Signal Generator	Agilent	E4438C	MY42081396	2020-11-17	2021-11-16
2	RF POWER AMPLIFIER	OPHIR	5225R	1052	NCR	NCR
3	RF POWER AMPLIFIER	OPHIR	5273F	1019	NCR	NCR
4	Stacked Broadband Log Periodic Antenna	SCHWARZBEC K	STLP 9128	9128ES-145	NCR	NCR
5	Stacked Mikrowellen LogPer Antenna	SCHWARZBEC K	STLP 9149	9149-484	NCR	NCR
6	Electric field probe	Narda S.TS./PMM	EP601	611WX80208	2021-03-25	2022-03-24
Note: No	CR means no calibration requi	irement				

ELECTRICAL FAST TRANSIENT IMMUNITY						
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Immunity Simulative Generator	EM TEST	UCS500-M4	0101-34	2021-06-21	2022-06-20

SURGES, LINE TO LINE AND LINE TO GROUND						
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Immunity Simulative Generator	EM TEST	UCS500-M4	0101-34	2021-06-21	2022-06-20

RF COMMON MODE						
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Simulator	FRANKONIA	CIT-10/75	A126A1195	2021-06-21	2022-06-20
2	CDN	FRANKONIA	CDN-M2+M3	A2210177	2021-06-21	2022-06-20
3	6dB Attenuator	FRANKONIA	DAM25W	1172040	2021-06-21	2022-06-20


MAG	MAGNETIC FIELD SUSCEPTIBILITY TEST					
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power frequency mag-field generator System	EVERFINE	EMS61000-8K	906003	2021-06-21	2022-06-20

VOL	VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST					
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2021-06-21	2022-06-20

5. TEST RESULTS

5.1. POWER LINE CONDUCTED EMISSION MEASUREMENT

5.1.1. Block Diagram of Test Setup

5.1.2. Test Standard

EN 55032:2015+A11:2020 Class B

Power Line Conducted Emission Limits (Class B)				
Frequency Limit (dB _µ V)				
(MHz)	Quasi-peak Level Average Level			
0.15 ~ 0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *		
0.50 ~ 5.00	56.0	46.0		
5.00 ~ 30.00	60.0	50.0		

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

5.1.3. EUT Configuration on Test

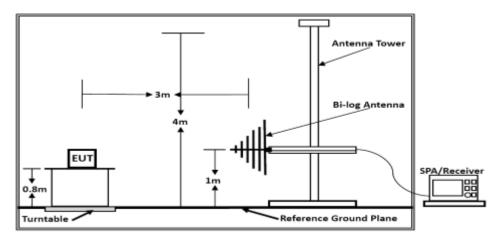
The following equipments are installed on Power Line Conducted Emission Measurement to meet the EN 55032 requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.1.4. Operating Condition of EUT

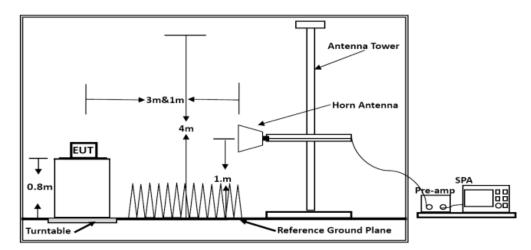
- 5.1.4.1. Setup the EUT as shown on Section 5.1.1
- 5.1.4.2. Turn on the power of all equipments.
- 5.1.4.3.Let the EUT work in measuring mode(1) and measure it.

5.1.5. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and connected to the AC mains through Line Impedance Stability Network (L.I.S.N). This provided 50-ohm coupling impedance for the tested equipments. Both sides of AC line are investigated to find out the maximum conducted emission according to the EN 55032 regulations during conducted emission measurement.


The bandwidth of the field strength meter is set at 9kHz in 150kHz~30MHz. The frequency range from 150kHz to 30MHz is investigated.

5.1.6. Test Results


PASS.

5.2. RADIATED EMISSION MEASUREMENT

5.2.1. Block Diagram of Test Setup

Below 1GHz

Above 1GHz

5.2.2. Test Standard

EN 55032:2015+A11:2020 Class B

All emanations from a class B device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified below:

Limits for Radiated Emission Below 1GHz				
Frequency	Distance	Field Strengths Limit		
(MHz)	(Meters)	(dBµV/m)		
30 ~ 230	3	40		
230 ~ 1000	3	47		

^{***}Note:

⁽²⁾ Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.

Limits for Radiated Emission Above 1GHz				
Frequency	Distance	Peak Limit	Average Limit	
(MHz)	(Meters)	(dBµV/m)	(dBµV/m)	
1000 ~ 3000	3	70	50	
3000 ~ 6000 3 74 54				
***Note: The lower limit applies at the transition frequency.				

5.2.3. EUT Configuration on Test

The EN 55032 regulations test method must be used to find the maximum emission during radiated emission measurement.

5.2.4. Operating Condition of EUT

5.2.4.1. Turn on the power.

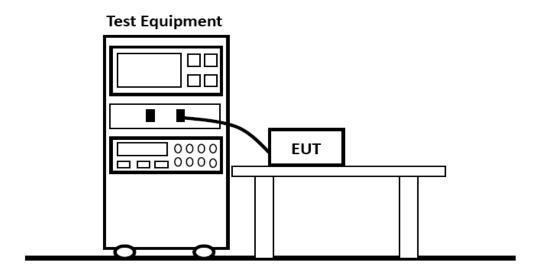
5.2.4.2.Let the EUT work in the test mode(1) and measure it.

5.2.5. Test Procedure

The EUT is placed on a turntable, which is 0.8 meter high above the ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. By-log antenna is used as a receiving antenna. Both horizontal and vertical polarization of the antenna is set on test.

The bandwidth of the EMI test receiver is set at RBW/VBW=120kHz/300kHz.and the frequency range from 30MHz to 1000MHz is checked.

The bandwidth of the Spectrum analyzer is set at RBW/VBW=1MHz/3MHz and the frequency range from 1GHz to the frequency which about 5th carrier harmonic or 6GHz is checked.


5.2.6. Test Results

PASS.

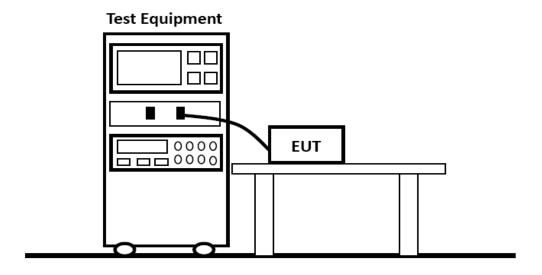
⁽¹⁾ The smaller limit shall apply at the combination point between two frequency bands.

5.3. HARMONIC CURRENT EMISSION MEASUREMENT

5.3.1. Block Diagram of Test Setup

5.3.2. Test Standard

EN IEC 61000-3-2:2019


5.3.3. Operating Condition of EUT

Same as Section 5.2.4, except the test setup replaced as Section 5.3.1.

5.3.4. Test Results

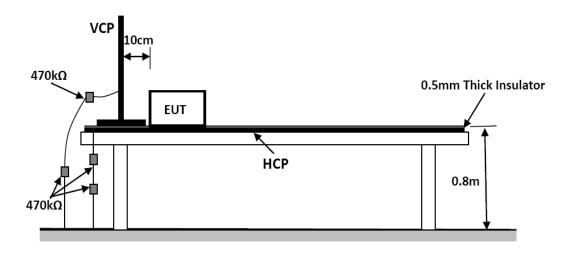
5.4. VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

5.4.1. Block Diagram of Test Setup

5.4.2. Test Standard

EN 61000-3-3: 2013+A1:2019

5.4.3. Operating Condition of EUT


Same as Section 5.2.4, except the test setup replaced as Section 5.4.1.

5.4.4. Test Results

PASS.

5.5. ELECTROSTATIC DISCHARGE IMMUNITY TEST

5.5.1. Block Diagram of Test Setup

5.5.2. Test Standard

EN 55035:2017+A11: 2020 (EN 61000-4-2: 2009, Severity Level: 3 / Air Discharge:

±8KV, Level: 2 / Contact Discharge: ±4KV)

5.5.3. Severity Levels and Performance Criterion

5.5.3.1. Severity level

Lovel	Test Voltage	Test Voltage
Level	Contact Discharge (KV)	Air Discharge (KV)
1	±2	±2
2	±4	±4
3	±6	±8
4	±8	±15
X	Special	Special

5.5.3.2. Performance Criterion

Performance Criterion: B

5.5.4. EUT Configuration on Test

The configuration of EUT is listed in Section 5.5.1.

5.5.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 5.1.4. Except the test set up replaced by Section 5.5.1.

5.5.6. Test Procedure

5.2.6.1. Air Discharge

This test is done on a non-conductive surfaces. The round discharge tip of the Electrostatic Discharge simulator shall be approached as fast as possible then to touch the EUT. After each discharge, the simulator shall be removed from the EUT. The simulator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed

5.2.6.2. Contact Discharge

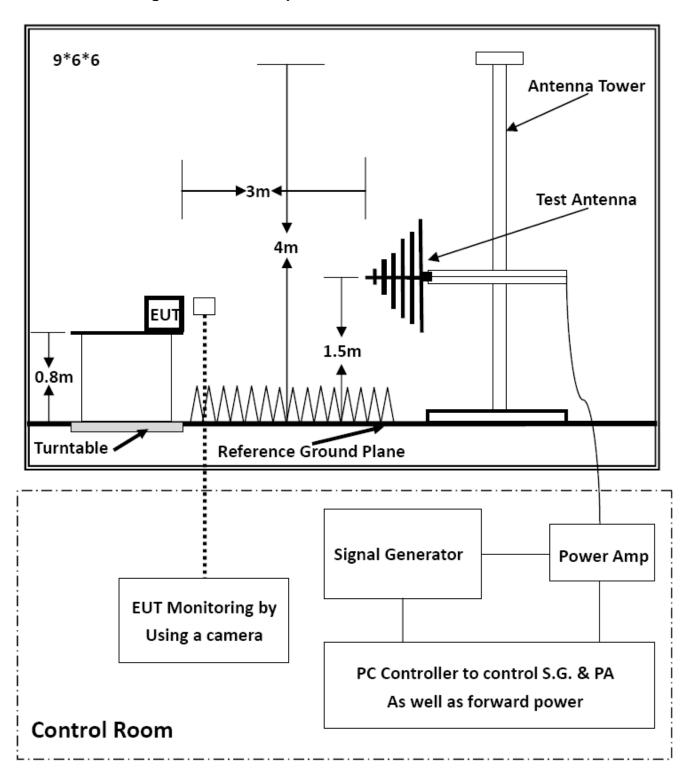
All the procedure shall be same as air discharge, except using the acute discharge tip. The top end of the Electrostatic Discharge simulator is touch the EUT all the time when the simulator is re-triggered for a new single discharge and repeated 10 times for each pre-selected test point.

5.2.6.3. Indirect Discharge For Horizontal Coupling Plane

The vertical coupling plane(VCP) is placed 0.1m away from EUT. The top end of Electrostatic Discharge simulator should aim at the center of one border of the VCP for at least 25 times discharge.

5.2.6.4. Indirect Discharge For Vertical Coupling Plane

The top end of Electrostatic Discharge simulator should place at the point 0.1m away from EUT on the horizontal coupling plane(HCP). At least 25 times discharge should be done for every pre-selected point around EUT.


Record any performance degradation of the EUT during the test and judge the test result according to ce criterion.

5.5.7. Test Results

PASS.

5.6. RF FIELD STRENGTH SUSCEPTIBILITY TEST

5.6.1. Block Diagram of Test Setup

5.6.2. Test Standard

EN 55035:2017+A11: 2020 (EN 61000-4-3: 2006+A2: 2010 Severity Level: 2, 3V/m)

5.6.3. Severity Levels and Performance Criterion

5.6.3.1. Severity level

Level	Field Strength (V/m)
1	1
2	3
3	10
X	1

5.6.3.2. Performance Criterion Performance Criterion: A

5.6.4. EUT Configuration on Test

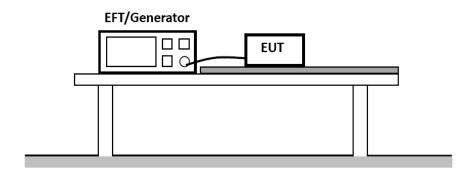
The configuration of EUT is listed in Section 5.6.1.

5.6.5. Operating Condition of EUT

Same as radiated emission measurement, which is listed in Section 5.2..4, except the test setup replaced as Section 5.6.1.

5.6.6. Test Procedure

The EUT are placed on a table, which is 0.8 meter high above the ground. The EUT is set 3 meters away from the transmitting antenna, which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna is set on test. Each of the four sides of the EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD Recording is used to monitor its screen. All the scanning conditions are as following:


Condition of Test	Remark
Fielded Strength	3 V/m (Severity Level 2)
Radiated Signal	Unmodulated
Test Frequency Range (swept test)	80-1000MHz
Test Frequency (spot test)	1800MHz, 2600MHz, 3500MHz, 5000MHz
Dwell time of radiated	0.0015 decade/s
Waiting Time	3 Sec.

5.6.7. Test Results

PASS.

5.7. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

5.7.1. Block Diagram of Test Setup

5.7.2. Test Standard

EN 55035:2017+A11: 2020 (EN 61000-4-4: 2012, Severity Level, Level 2: 1KV)

5.7.3. Severity Levels and Performance Criterion

5.7.3.1. Severity level

Open Circuit Output Test Voltage ±10%					
Level	On I/O (Input/Output) Signal data and control lines				
1	0.5 KV	0.25 KV			
2	1 KV	0.5 KV			
3	2 KV	1 KV			
4	4 KV	2 KV			
X	Special	Special			

5.7.3.2. Performance Criterion Performance Criterion: B

5.7.4. EUT Configuration on Test

The configuration of EUT is listed in Section 5.7.1.

5.7.5. Operating Condition of EUT

- 5.7.5.1. Setup the EUT as shown in Section 5.7.1.
- 5.7.5.2. Turn on the power of all equipments.
- 5.7.5.3. Let the EUT work in test mode(1) and measure it.

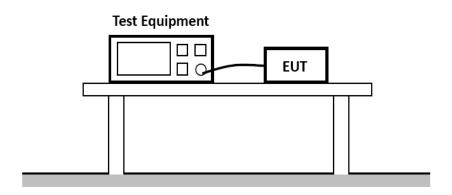
5.7.6. Test Procedure

The EUT is put on the table, which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

5.7.6.1. For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device, which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 1 mins.

5.7.6.2. For signal lines and control lines ports: It's unnecessary to test.


5.7.6.3. For DC output line ports: It's unnecessary to test.

5.7.7. Test Results

PASS.

5.8. SURGE IMMUNITY TEST

5.8.1. Block Diagram of Test Setup

5.8.2. Test Standard

EN 55035:2017+A11: 2020 (EN 61000-4-5: 2014+A1: 2017, Severity Level: Line to Line: Level 2, 1.0KV, Line to Earth: Level 3, 2.0KV)

5.8.3. Severity Levels and Performance Criterion

5.8.3.1. Severity level

Severity Level	Open-Circuit Test Voltage (KV)
1	0.5
2	1.0
3	2.0
4	4.0
*	Special

5.8.3.2. Performance Criterion

Performance Criterion: B

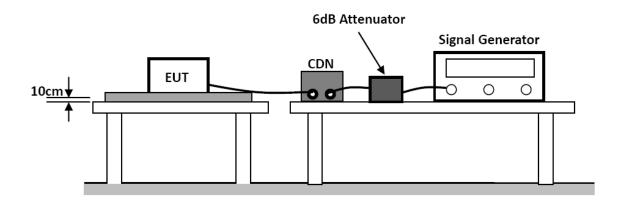
5.8.4. EUT Configuration on Test

The configuration of EUT is listed in Section 5.8.1.

5.8.5. Operating Condition of EUT

- 5.8.5.1. Setup the EUT as shown in Section 5.8.1.
- 5.8.5.1. Turn on the power of all equipments.
- 5.8.5.1.Let the EUT work in test mode (1) and measure it.

5.8.6. Test Procedure


- 5.8.6.1. Set up the EUT and test generator as shown on Section 5.8.1.
- 5.8.6.2. For line to line coupling mode, provide a 1.0 KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 5.8.6.3. At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 5.8.6.4. Different phase angles are done individually.
- 5.8.6.5. Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

5.8.7. Test Results

PASS.

5.9. INJECTED CURRENTS SUSCEPTIBILITY TEST

5.9.1. Block Diagram of Test Setup

5.9.2. Test Standard

EN 55035:2017+A11: 2020(EN 61000-4-6: 2014+A1:2015, Severity Level: Level 2, (0.15MHz ~ 80MHz))

5.9.3. Severity Levels and Performance Criterion

5.9.3.1. Severity level

Level	Field Strength (V)		
1	1		
2	3		
3	10		
X	Special		

5.9.3.2. Performance Criterion Performance Criterion: A

5.9.4. EUT Configuration on Test

The configuration of EUT is listed in Section 5.9.1.

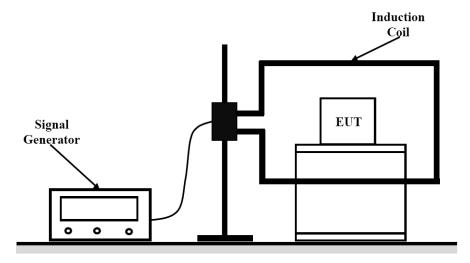
5.9.5. Operating Condition of EUT

5.9.5.1. Setup the EUT as shown in Section 5.9.1.

5.9.5.2. Turn on the power of all equipments.

5.9.5.3.Let the EUT work in test mode(1) and measure it.

5.9.6. Test Procedure


- 5.9.6.1. Set up the EUT, CDN and test generators as shown on Section 5.9.1.
- 5.9.6.2. Let the EUT work in test mode and measure it.
- 5.9.6.3. The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 5.9.6.4. The disturbance signal described below is injected to EUT through CDN.
- 5.9.6.5. The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 5.9.6.6. The frequency range is swept from 150kHz to 10MHz using 3V signal level,10MHz to 30MHz using 3V to 1V signal level,30MHz to 80MHz using 1V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave. 5.9.6.7. The rate of sweep shall not exceed 1.5*10-3decades/s. where the frequency is swept incrementally; the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 5.9.6.8. Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

5.9.7. Test Results

PASS.

5.10. MAGNETIC FIELD SUSCEPTIBILITY TEST

5.10.1. Block Diagram of Test Setup

5.10.2. Test Standard

EN 55035:2017+A11: 2020 (EN 61000-4-8: 2010, Severity Level: Level 1, 1A/m)

5.10.3. Severity Levels and Performance Criterion

5.10.3.1. Severity level

Level	Field Strength (A/m)		
1	1		
2	3		
3	10		
4	30		
5	100		
X	Special		

5.10.3.2. Performance Criterion

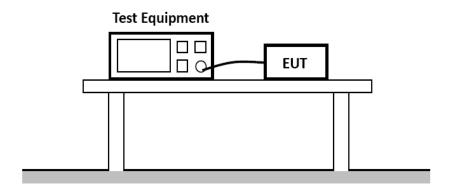
Performance Criterion: A

5.10.4. EUT Configuration on Test

The configuration of EUT is listed in Section 5.10.1.

5.10.5. Test Procedure

EUT is placed on an insulating support of 0.1m high above a table of 0.8m high. There is a minimum 1m*1m ground metallic plane put on this table. EUT is put in the center of the magnetic coil then two orientations of the magnetic coil, horizontal and vertical, shall be rotated in order to expose the EUT to the difference polarization magnetic field.


Record any performance degradation of the EUT during the test and judge the test result according to performance criterion.

5.10.6. Test Results

PASS.

5.11. VOLTAGE DIPS AND INTERRUPTIONS TEST

5.11.1. Block Diagram of Test Setup

5.11.2. Test Standard

EN 55035:2017+A11: 2020 (EN IEC 61000-4-11:2020)

5.11.3. Severity Levels and Performance Criterion

5.11.3.1. Severity level

Test Level							
Voltage Reduction Voltage Dips Duration							
%U _T	%U _⊤	(in Period)					
100	0	0.5					
100	0	1					
30	70	5					
Voltage Reduction	Voltage Dips	Duration					
[™] %U _T	%U _⊤	(in Period)					
100	Ō	250					

5.11.3.2. Performance Criterion Performance Criterion: B&C

5.11.4. EUT Configuration on Test

The configuration of EUT is listed in Section 5.11.1.

5.11.5. Operating Condition of EUT

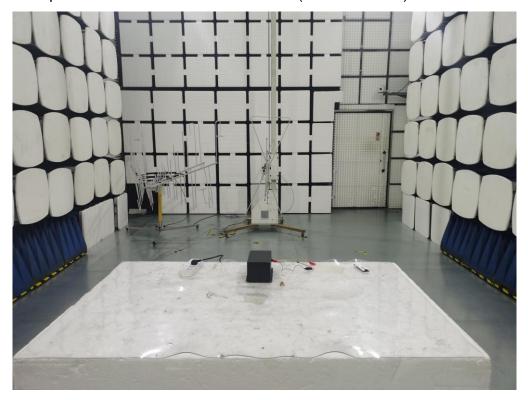
- 5.11.5.1. Setup the EUT as shown in Section 5.11.1.
- 5.11.5.2. Turn on the power of all equipments.
- 5.11.5.3. Let the EUT work in test mode (1) and measure it.

5.11.6. Test Procedure

- 5.11.6.1. Set up the EUT and test generator as shown on Section 5.11.1.
- 5.11.6.2. The interruptions are introduced at selected phase angles with specified duration.
- 5.11.6.3. Record any degradation of performance.

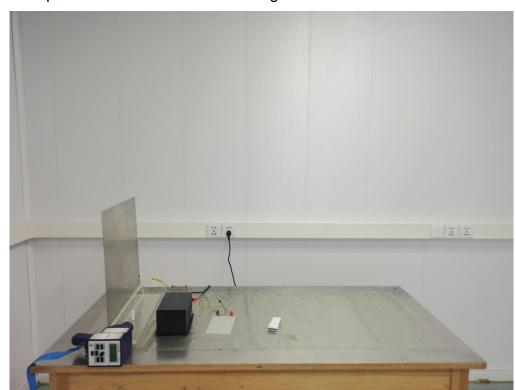
5.11.7. Test Results

PASS.

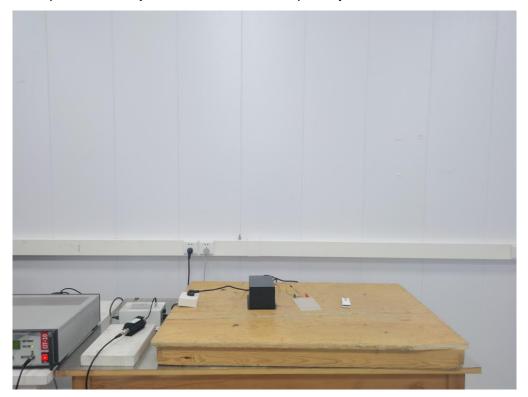

Annex A

(Test photograph)

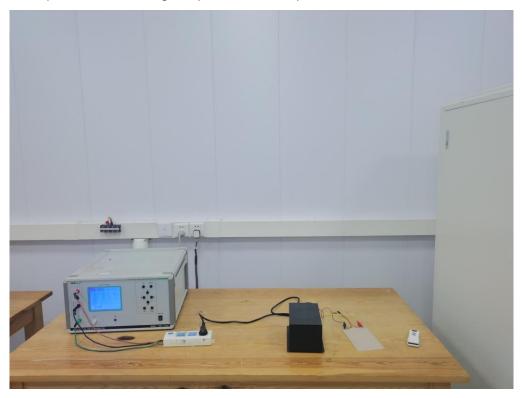

A.1 Test Setup Photo of Power Line Conducted Measurement


A.2 Test Setup Photo of Radiated Measurement (30MHz~1GHz)

A.3 Test Setup Photo of Harmonic & Flicker Measurement

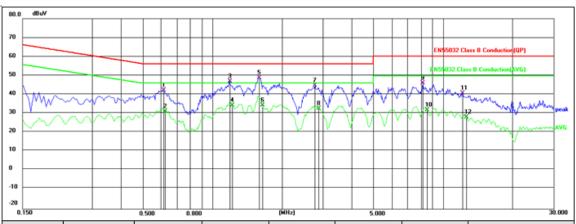

A.4 Test Setup Photo of Electrostatic Discharge Test

A.5 Photo of Electrical Fast Transient/Burst Test & Surge Immunity Test


A.6 Test Setup Photo of Injected Currents Susceptibility Test

A.7 Test Setup Photo of Magnetic Field Immunity Test

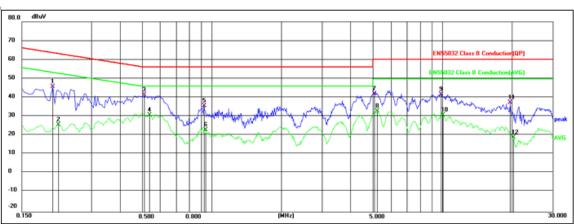
A.8 Test Setup Photo of Voltage Dips and Interruptions Test


ANNEX B

(Emission and Immunity test results)

B.1 POWER LINE CONDUCTED EMISSION MEASUREMENT

Environmental Conditions:	22.7℃, 53.7% RH
Test Voltage:	AC 230V,50Hz
Test Model:	FB-500W-60V
Test Mode:	Working
Test Engineer:	Zhang ZePei
Pol:	Line


Detailed results are shown below

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.6136	32.39	9.93	42.32	56.00	-13.68	QP
2	0.6226	21.37	9.93	31.30	46.00	-14.70	AVG
3	1.1851	37.15	9.94	47.09	56.00	-8.91	QP
4	1.2121	24.61	9.94	34.55	46.00	-11.45	AVG
5	1.5901	39.01	9.96	48.97	56.00	-7.03	QP
6	1.6396	24.59	9.96	34.55	46.00	-11.45	AVG
7	2.7871	34.83	9.99	44.82	56.00	-11.18	QP
8	2.8906	22.74	9.99	32.73	46.00	-13.27	AVG
9	8.1601	35.95	10.11	46.06	60.00	-13.94	QP
10	8.5110	21.82	10.12	31.94	50.00	-18.06	AVG
11	12.1786	30.45	10.31	40.76	60.00	-19.24	QP
12	12.6241	18.01	10.35	28.36	50.00	-21.64	AVG

Environmental Conditions:	22.7℃, 53.7% RH
Test Voltage:	AC 230V,50Hz
Test Model:	FB-500W-60V
Test Mode:	Working
Test Engineer:	Zhang ZePei
Pol:	Neutral

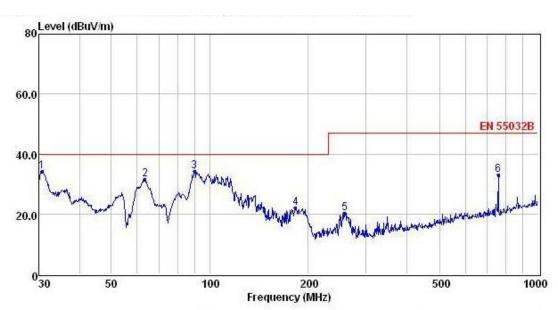
Detailed results are shown below

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.2041	35.99	9.89	45.88	63.44	-17.56	QP
2	0.2162	16.11	9.89	26.00	52.96	-26.96	AVG
3	0.5101	31.57	9.91	41.48	56.00	-14.52	QP
4	0.5371	21.20	9.91	31.11	46.00	-14.89	AVG
5	0.9241	25.80	9.92	35.72	56.00	-20.28	QP
6	0.9376	13.24	9.92	23.16	46.00	-22.84	AVG
7	5.0776	32.19	10.02	42.21	60.00	-17.79	QP
8	5.2216	23.10	10.02	33.12	50.00	-16.88	AVG
9	9.8611	31.77	10.14	41.91	60.00	-18.09	QP
10	10.0771	20.76	10.15	30.91	50.00	-19.09	AVG
11	19.6891	26.85	10.76	37.61	60.00	-22.39	QP
12	20.3146	8.33	10.73	19.06	50.00	-30.94	AVG

B.2 Radiated Disturbance Test Results (30MHz to 1000MHz)

Environmental Conditions:	22.2℃, 53.3% RH
Test Voltage:	AC 230V,50Hz
Test Model:	FB-500W-60V
Test Mode:	Working
Test Engineer:	HY Luo
Pol:	Vertical

Detailed results are shown below


1

2

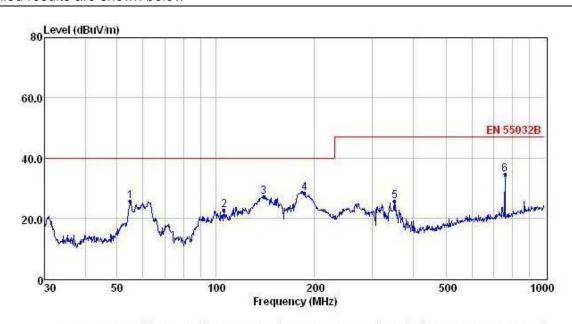
3

4

5

Freq Reading CabLos Antfac Measured Limit Over Remark dB/m dB MHz dBuV dB dBuV/m dBuV/m 30.75 21.54 34.26 40.00 -5.74 0.39 12.33 QP 63.31 19.72 0.48 31.58 40.00 -8.42 11.38 QP 89.90 34.28 40.00 -5.72 21.73 0.68 11.87 QP 183.20 11.48 0.70 9.96 22.14 40.00 -17.86 QP 258.33 7.15 1.01 12.05 20.21 47.00 -26.79 QP 758.04 11.68 1.69 19.54 32.91 47.00 -14.09

Note: 1. All readings are Quasi-peak values.


- 2. Measured= Reading + Antenna Factor + Cable Loss
- 3. The emission that are 20db below the official limit are not reported

Environmental Conditions:	22.2℃, 53.3% RH
Test Voltage:	AC 230V,50Hz
Test Model:	FB-500W-60V
Test Mode:	Working
Test Engineer:	HY Luo
Pol:	Horizontal

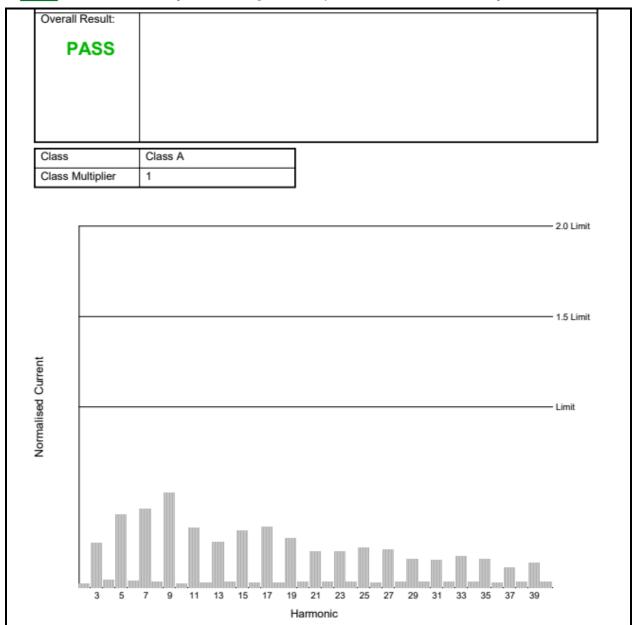
Detailed results are shown below

1

2

Freq Reading CabLos Antfac Measured Limit Over Remark MHz dBuV dB dB/m dBuV/m dBuV/m dB 54.83 11.97 0.46 13.03 25.46 40.00 -14.54 106.01 9.40 0.68 12.61 22.69 40.00 -17.31 QP

3 140.34 18.23 0.75 8.19 27.17 40.00 -12.83 QP 186.44 17.10 0.98 10.25 28.33 40.00 -11.67 QP 351.71 9.99 1.15 14.30 25.44 47.00 -21.56 QP 1.69 19.54 758.04 13.16 34.39 47.00 -12.61 QP


Note: 1. All readings are Quasi-peak values.

- 2. Measured= Reading + Antenna Factor + Cable Loss
- 3. The emission that are 20db below the official limit are not reported

B.3 HARMONIC CURRENT EMISSION MEASUREMENT

Test Model	FB-500W-60V	Test Engineer	Zhang ZePei
Test Voltage	AC 230V/50Hz		
Harmonic Results Against Chosen Limit	Notes:		
Test Parameter Detail Operating Frequency:	s	User Entered 50	Measured 48.9840
Operating Voltage: Specified Power: Fundamental Current: Power Factor:		230 0.0000 0.0000 0.0000	229.2213 491.2925 0.6200 0.9515
Average Input Current: Maximum POHC: POHC Limit:			1.0420 0.0462 0.2514
Maximum THC: Minimum Power: Class Multiplier:		75 1.0000 00:02:30	0.8451

40

0.01%

0.10%

Pass

<u> Brieriz</u> ,	ich L	CD COII	inpitunce 1	Bully Bulletin	ny Biu.			пере	/ 1 1	10 LOOL 10	7001
Overall Resu	ult:										1
PAS	S										
											l
		No	and a state of	Manager	Davidatio		Alla	d		Dooult]]
1		NO.	ominal	Measured	Deviatio	n		owed		Result	l
							Dev	iation			-
Supply Volta	ge	23	0.00V	229.22V	0.78V		4.0	60V		Pass	1
Supply Frequ	uency	50	.00Hz	49.98Hz	0.02Hz		0.2	25Hz		Pass	
Crest Factor		1.	4100	1.4173	0.0073	0.0073 +/-		+/- 0.01		Pass	
Harmonic	Rea	ading	Limit	Result	Harmonic	Read	ding	Limit		Result]
2	0.0	08%	0.20%	Pass	3	0.06	3%	0.90%		Pass]
4	0.0	03%	0.20%	Pass	5	0.08	3%	0.40%		Pass]
6	0.0)2%	0.20%	Pass	7	0.04	1%	0.30%		Pass]
8	0.0)2%	0.20%	Pass	9	0.04	1%	0.20%		Pass	
10	0.0	01%	0.20%	Pass	11	0.06	3%	0.10%		Pass]
12	0.0	01%	0.10%	Pass	13	0.02	2%	0.10%		Pass]
14	0.0	01%	0.10%	Pass	15	0.04		0.10%		Pass	1
16	0.0	01%	0.10%	Pass	17	0.02	2%	0.10%		Pass	1
18	0.0	01%	0.10%	Pass	19	0.03	3%	0.10%		Pass	1
20	0.0	01%	0.10%	Pass	21	0.03	3%	0.10%		Pass]
22	0.0	01%	0.10%	Pass	23	0.01	1%	0.10%		Pass	1
24	0.0	01%	0.10%	Pass	25	0.02	2%	0.10%		Pass	1
26	_	01%	0.10%	Pass	27	0.04		0.10%		Pass	1
28	_)1%	0.10%	Pass	29	0.02		0.10%	_	Pass	1
30	_	00%	0.10%	Pass	31	0.01		0.10%	_	Pass	1
32	0.0)1%	0.10%	Pass	33	0.02	2%	0.10%		Pass	1
34	0.0)1%	0.10%	Pass	35	0.01	1%	0.10%		Pass	1
36	_)1%	0.10%	Pass	37	0.03		0.10%		Pass	1
38	0.0)1%	0.10%	Pass	39	0.03	3%	0.10%		Pass	1

	Overall Result:		
	PASS		
	Clace	Clace A	

Class	Class A
Class Multiplier	1

Harm	Limit 1	Limit 2	Average Reading	<l1 <l2<="" td=""><td>Max Reading</td><td><l2< td=""><td>Pass FAIL</td><td>Harm</td><td>Limit 1</td><td>Limit 2</td><td>Average Reading</td><td><l1 <l2<="" td=""><td>Max Reading</td><td><l2< td=""><td>Pass FAIL</td></l2<></td></l1></td></l2<></td></l1>	Max Reading	<l2< td=""><td>Pass FAIL</td><td>Harm</td><td>Limit 1</td><td>Limit 2</td><td>Average Reading</td><td><l1 <l2<="" td=""><td>Max Reading</td><td><l2< td=""><td>Pass FAIL</td></l2<></td></l1></td></l2<>	Pass FAIL	Harm	Limit 1	Limit 2	Average Reading	<l1 <l2<="" td=""><td>Max Reading</td><td><l2< td=""><td>Pass FAIL</td></l2<></td></l1>	Max Reading	<l2< td=""><td>Pass FAIL</td></l2<>	Pass FAIL
															-
2	1.0800A	1.6200A	17.71mA	11	20.89mA	✓	Pass	3	2.3000A	3.4500A	562.8mA	11	566.4mA	_	Pass
4	430.0mA	645.0mA	14.58mA	11	17.10mA	1	Pass	5	1.1400A	1.7100A	460.1mA	11	462.7mA	1	Pass
6	300.0mA	450.0mA	10.22mA	11	11.74mA	1	Pass	7	770.0mA	1.1550A	333.9mA	11	335.4mA	1	Pass
8	230.0mA	345.0mA	6.286mA	11	6.929mA	>	Pass	9	400.0mA	600.0mA	208.9mA	11	209.5mA	1	Pass
10	184.0mA	276.0mA	3.973mA	11	4.352mA	>	N/A	11	330.0mA	495.0mA	108.4mA	11	108.7mA	/	Pass
12	153.3mA	230.0mA	3.616mA	11	4.093mA	\	N/A	13	210.0mA	315.0mA	52.81mA	11	53.02mA	_	Pass
14	131.4mA	197.1mA	3.457mA	11	3.972mA	\	N/A	15	150.0mA	225.0mA	46.51mA	11	46.84mA	_	Pass
16	115.0mA	172.5mA	2.803mA	11	3.234mA	1	N/A	17	132.3mA	198.5mA	44.24mA	11	44.42mA	_	Pass
18	102.2mA	153.3mA	2.425mA	11	2.823mA	/	N/A	19	118.4mA	177.6mA	32.45mA	11	32.58mA	_	Pass
20	92.00mA	138.0mA	2.301mA	11	2.710mA	1	N/A	21	107.1mA	160.7mA	21.14mA	11	21.24mA	/	Pass
22	83.63mA	125.4mA	2.253mA	11	2.655mA	1	N/A	23	97.82mA	146.7mA	19.29mA	11	19.48mA	_	Pass
24	76.66mA	115.0mA	2.025mA	11	2.423mA	~	N/A	25	90.00mA	135.0mA	19.85mA	11	19.96mA	_	Pass
26	70.76mA	106.1mA	1.667mA	11	2.010mA	\	N/A	27	83.33mA	125.0mA	17.29mA	11	17.36mA	~	Pass
28	65.71mA	98.57mA	1.707mA	11	2.026mA	~	N/A	29	77.58mA	116.3mA	11.99mA	11	12.05mA	_	Pass
30	61.33mA	92.00mA	1.720mA	11	2.032mA	\	N/A	31	72.58mA	108.8mA	10.84mA	11	10.97mA	~	Pass
32	57.50mA	86.25mA	1.426mA	11	1.700mA	V	N/A	33	68.18mA	102.2mA	11.57mA	11	11.68mA	1	Pass
34	54.11mA	81.17mA	1.335mA	11	1.572mA	1	N/A	35	64.28mA	96.42mA	10.01mA	11	10.07mA	_	Pass
36	51.11mA	76.66mA	1.220mA	11	1.442mA	\	N/A	37	60.81mA	91.21mA	6.726mA	11	6.790mA	1	Pass
38	48.42mA	72.63mA	1.193mA	11	1.399mA	\	N/A	39	57.69mA	86.53mA	7.792mA	11	7.856mA	_	Pass
40	46.00mA	69.00mA	1.227mA	11	1.408mA	1	N/A								

<L1 : Reading is below limit 1.

<L2 : Reading is below limit 2.

N/A : Harmonic current below 0.6% of rated current or 5mA, whichever is greater, are disregarded.

B.4 VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

Test Model		FB-500W-60	V	Test Engineer	Zhang ZePei
Test Voltage		AC 230V/50H	Hz		
Overall Result: PASS	Note Mea	es: surement method	- Voltage		
		Pst	dc (%)	dmax (%)	d(t) > 3.3%(ms)
Limit		1.000	3.300	4.000	500
Reading 1		0.088	0.006	0.102	0

B.5 ELECTROSTATIC DISCHARGE IMMUNITY TEST

Electrostatic Discharge Test Results							
Standard	□ IEC 61000-4-2 ☑ EN 61000-4-2						
Applicant	Shenzhen Filmbase Technology Co., Ltd.						
EUT	PDLC Smart Film Smart Galss	Temperature	23.6℃				
M/N	FB-500W-60V	Humidity	53.2%				
Criterion	В	Pressure	1021mbar				
Test Mode	Working	Test Engineer	Zhang ZePei				

Officiali			1 102 mbai					
Test Mode	Working			Test Eng	est Engineer Zhang ZePe			
			r Discharge					
		Test Levels			Res	sults		
Test Points	± 2kV	± 4kV	± 8kV	Passed	Fail	Performance Criterion		
Front						□A ⊠B		
Back						□A ⊠B		
Left	\boxtimes					□A ⊠B		
Right						□A ⊠B		
Тор	\boxtimes					□A ⊠B		
Bottom						□A ⊠B		
		Cont	act Dischar	ge				
		Test Levels			Res	sults		
Test Points	± 2 kV	,	±4 kV	Passed	Fail	Performance Criterion		
Front			\boxtimes	\boxtimes		□A ⊠B		
Back			\boxtimes	\boxtimes		□A ⊠B		
Left	\boxtimes		\boxtimes	\boxtimes		□A ⊠B		
Right			\boxtimes	\boxtimes		□A ⊠B		
Top	\boxtimes		\boxtimes	\boxtimes		□A ⊠B		
Bottom	\boxtimes		\boxtimes			□A ⊠B		
	Disc	harge To H	orizontal Co	oupling Pla	ane			
		Test Levels		Results				
Side of EUT	± 2 kV	,	± 4 kV	Passed	Fail	Performance Criterion		
Front	\boxtimes		\boxtimes			□A ⊠B		
Back			\boxtimes	\boxtimes		□A ⊠B		
Left	\boxtimes			\boxtimes		□A ⊠B		
Right	\boxtimes		\boxtimes	\boxtimes		□A ⊠B		
	Dis	charge To	Vertical Co	upling Plar	ne			
		Test Levels			Res	sults		
Side of EUT	± 2 kV	,	± 4 kV	Passed	Fail	Performance Criterion		
Front	\boxtimes		\boxtimes			□A ⊠B		
Back	\boxtimes		\boxtimes			□A ⊠B		
Left	\boxtimes		\boxtimes			□A ⊠B		
Right	\boxtimes		\boxtimes			□A ⊠B		

B.6 RF FIELD STRENGTH SUSCEPTIBILITY TEST

RF Field Strength Susceptibility Test Results									
Standard	□ IEC 61000-4-3 ☑ EN 61000-4-3								
Applicant	Shenzhen Filmbase Technology Co	Shenzhen Filmbase Technology Co., Ltd.							
EUT	PDLC Smart Film Smart Galss	Temperature	24.8℃						
M/N	FB-500W-60V	Humidity	53.7%						
Field Strength	3 V/m	Criterion	Α						
Test Mode	Working	Test Engineer	Zhang ZePei						
Test Frequency	80MHz to 1000MHz (swept test) 1800MHz, 2600MHz, 3500MHz, 5000MHz (spot test)								
Modulation	□None □ Pulse	☑AM 1KHz 80%)						
Steps	1%								

	Horizontal	Vertical
Front	PASS	PASS
Right	PASS	PASS
Rear	PASS	PASS
Left	PASS	PASS
Note:		

B.7 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

Electrical Fast Transient/Burst Test Results						
Standard	□ IEC 61000-4-4 ☑ EN	□ IEC 61000-4-4 ☑ EN 61000-4-4				
Applicant	Shenzhen Filmbase Technology Co., Ltd.					
EUT	PDLC Smart Film Smart Galss		Temperatu	re	23.7℃	
M/N	FB-500W-60V		Humidity		52.8%	
Test Mode	Working		Criterion		В	
Test Engineer	Zhang ZePei					
Line	Test Voltage	R	esult (+)		Result (-)	

Line	Test Voltage	Result (+)	Result (-)
L	1KV	PASS	PASS
N	1KV	PASS	PASS
PE			
L-N	1KV	PASS	PASS
L-PE			
N-PE			
L-N-PE			
Signal Line			
I/O Cable			
Note:			

B.8 SURGE IMMUNITY TEST

Surge Immunity Test Result						
Standard	□ IEC 61000-4-5 ☑ EN 61000-4	□ IEC 61000-4-5 ☑ EN 61000-4-5				
Applicant	Shenzhen Filmbase Technology Co., Ltd.					
EUT	PDLC Smart Film Smart Galss Temperature 22.6℃					
M/N	FB-500W-60V Humidity 53.6%					
Test Mode	Working Criterion B					
Test Engineer	Zhang ZePei					

TCSt Eligini	Znan				
Location	Polarity	Phase Angle	Number of Pulse	Pulse Voltage (KV)	Result
L-N	+	+90°, -270°	5	1.0	PASS
L-IN	-	+90°, -270°	5	1.0	PASS
L-PE					
N-PE					
Signal Line					
Note					

B.9 INJECTED CURRENTS SUSCEPTIBILITY TEST

Injected Currents Susceptibility Test Results				
Standard	□ IEC 61000-4-6 ☑ EN 61000-4-6			
Applicant	Shenzhen Filmbase Technology Co., Ltd.			
EUT	PDLC Smart Film Smart Galss Temperature 24.5°C			
M/N	FB-500W-60V	Humidity	54.8%	
Test Mode	Working Criterion A			
Test Engineer	Zhang ZePei			

Frequency Range (MHz)	Injected Position	Strength (Unmodulated)	Criterion	Result
0.15 ~ 10		3V		
10 ~ 30	AC Mains	3V ~ 1V	Α	PASS
30 ~ 80		1V		
Note:				

B.10 MAGNETIC FIELD SUSCEPTIBILITY TEST

Magnetic Field Immunity Test Result					
Standard	□ IEC 61000-4-8 ☑ EN 61000-4-8				
Applicant	Shenzhen Filmbase Technology Co., Ltd.				
EUT	PDLC Smart Film Smart Galss Temperature 23.9℃				
M/N	FB-500W-60V	Humidity	54.6%		
Test Mode	Working	Α			
Test Engineer	Zhang ZePei				

Test Level (A/M)	Testing Duration	Coil Orientation	Criterion	Result
1	5 mins	X	Α	PASS
1	5 mins	Y	Α	PASS
1	5 mins	Z	А	PASS

Note:

B.11 VOLTAGE DIPS AND INTERRUPTIONS TEST

Voltage Dips And Interruptions Test Results				
Standard	□ IEC 61000-4-11 ☑ EN 61000-4-11			
Applicant	Shenzhen Filmbase Technology Co., Ltd.			
EUT	PDLC Smart Film Smart Galss Temperature 23.8°C			
M/N	FB-500W-60V Humidity 52.3%			
Test Mode	Working Criterion B&C			
Test Engineer	Zhang ZePei			

Test Level % U _⊤	Voltage Dips & Short Interruptions % U _T	Duration (in periods)	Criterion	Result
0	100	0.5P	В	PASS
70	30	25P	С	PASS
0	100	250P	С	PASS

Note:		

ANNEX C

(External and internal photos of the EUT)

Fig. 1

Fig. 2

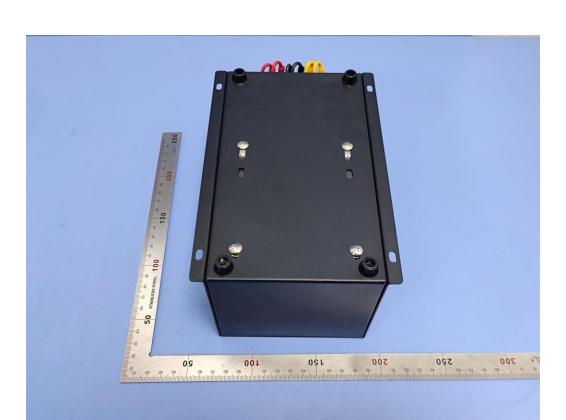


Fig. 3

----- THE END OF TEST REPORT -----