

FCC SDoC TEST REPORT

Shenzhen Filmbase Technology Co., Ltd.

PDLC Smart Film Smart Galss

Test Model: FB-500W-60V

Additional Model No.: Please Refer To Page 7

Prepared for : Shenzhen Filmbase Technology Co., Ltd.
Address : 3103/31F, 3A Building, Smart Park, Baolong,

Longgang, Shenzhen, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.
Address : Room 101, 201, Building A and Room 301, Building C,

Juji Industrial Park, Yabianxueziwei, Shajing Street,

Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : August 24, 2021

Number of tested samples : 1

Serial number : Prototype

Date of Test : August 24, 2021 ~ September 03, 2021

Date of Report : September 06, 2021

Report No.: LCS210706139AE

FCC SDoC TEST REPORT FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014

Report Reference No.: LCS210706139AE

Date Of Issue: September 06, 2021

Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address: : Room 101, 201, Building A and Room 301, Building C, Juji

Industrial Park, Yabianxueziwei, Shajing Street, Bao'an

Report No.: LCS210706139AE

District, Shenzhen, Guangdong, China

Testing Location/ Procedure...: Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method

Applicant's Name...... Shenzhen Filmbase Technology Co., Ltd.

Address 3103/31F, 3A Building, Smart Park, Baolong, Longgang,

Shenzhen, China

Test Specification

Standard.....: FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014

Test Report Form No...... LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: : Dated 2011-03

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. is acknowledged as copyright owner and source of the material. SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description......: PDLC Smart Film Smart Galss

Trade Mark : Filmbase ****

Test Model..... : FB-500W-60V

Input: AC 100-240V, 50Hz, 500W Ratings:

Output: AC 60V, 1667mA, Max, 500W

Result: : Positive

Compiled by:

Erina Ware

Supervised by:

Baron Wen

Emma Wang/ File administrators

Baron Wen/Technique principal

Gavin Liang/ Manager

Approved by

FCC -- TEST REPORT

Report No.: LCS210706139AE

Test Report No.: LCS210706139AE September 06, 2021

Date of issue

Test Model	: FB-500W-60V
EUT	: PDLC Smart Film Smart Galss
Applicant	: Shenzhen Filmbase Technology Co., Ltd.
	: 3103/31F, 3A Building, Smart Park, Baolong, Longgang, Shenzhen, China
Telephone	:/
Fax	
	• ,
Manufacturer	: Shenzhen Yuguang New Material Co., Ltd.
	: 202/ 2/F, Building 3, Huaqiang Industrial Logistics Park, No. 43 Qingfeng Avenue, Longgang District, Shenzhen City, Guangdong Province, China
Telephone	:/
Fax	
Factory	: Shenzhen Yuguang New Material Co., Ltd.
Address	
Telephone	:/
Fax	

Test Result according to the standards on page 6: Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Report No.: LCS210706139AE

Revision	Issue Date	Revisions	Revised By
000	September 06, 2021	Initial Issue	Gavin Liang

TABLE OF CONTENTS

Test Report Description	Page
1. SUMMARY OF STANDARDS AND RESULTS	6
1.1. Description of Standards and Results	6
2. GENERAL INFORMATION	7
2.1. Description of Device (EUT)	7
2.2. Support equipment List	7
2.3. Description of Test Facility	
2.4. Statement of the Measurement Uncertainty	8
2.5. Measurement Uncertainty	8
3. TEST RESULTS	9
3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT	9
3.2. Radiated emission Measurement	13
4. PHOTOGRAPH	18
5 EYTERNAL AND INTERNAL PHOTOS OF THE FILT	10

1. SUMMARY OF STANDARDS AND RESULTS

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

Report No.: LCS210706139AE

EMISSION					
Description of Test Item	Standard	Limits	Results		
Conducted disturbance at mains terminals	FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014	Class B	PASS		
Radiated disturbance	FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014	Class B	PASS		
N/A is an abbreviation for Not Applicable.					

Test mode:		
Mode	Working	Record

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

EUT : PDLC Smart Film Smart Galss

Trade Mark : Filmbase. Filmbase

Test Model : FB-500W-60V

Additional Model : FB-100W-60V, FB-020W-60V, FB-030W-60V,

FB-050W-60V, FB-200W-60V, FB-300W-60V

Report No.: LCS210706139AE

Model Declaration : PCB board, structure and internal of these model(s) are t

he same, So no additional models were tested

Power Supply : Input: AC 100-240V, 50Hz, 500W

Output: AC 60V, 1667mA, Max, 500W

Highest internal freq. : Fx≤108MHz

Highest internal frequency (Fx)	Highest measured frequency
$Fx \le 108 \text{ MHz}$	1 GHz
$108 \text{ MHz} < Fx \le 500 \text{ MHz}$	2 GHz
$500 \text{ MHz} < Fx \le 1 \text{ GHz}$	5 GHz
Fx > 1 GHz	5 x Fx up to a maximum of 6 GHz

NOTE 1 For FM and TV broadcast receivers, Fx is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies. NOTE 2 Fx is defined in EN 55032 Section 3.1.19.

Where Fx is unknown, the radiated emission measurements shall be performed up to 6 GHz

2.2. Support equipment List

Name	Manufacturers	M/N	S/N
	-		-

2.3. Description of Test Facility

Site Description

EMC Lab. : NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

2.4. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Report No.: LCS210706139AE

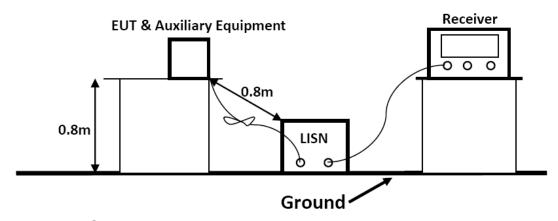
2.5. Measurement Uncertainty

Test	Parameters	Expanded Uncertainty (Ulab)	Expanded Uncertainty (Ucispr)
Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 2.63 dB ± 2.35 dB	± 3.8 dB ± 3.4 dB
Radiated Emission	Level accuracy (9kHz to 30MHz)	± 3.68 dB	N/A
Radiated Emission	Level accuracy (30MHz to 1000MHz)	± 3.48 dB	± 5.3 dB
Radiated Emission	Level accuracy (above 1000MHz)	± 3.90 dB	± 5.2 dB

- (1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.
- (2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

3. TEST RESULTS

3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT


3.1.1. Test Equipment

The following test equipments are used during the power line conducted measurement:

Report No.: LCS210706139AE

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	EZ	EZ-EMC	/	N/A	N/A
2	EMI Test Receiver	R&S	ESR3	102312	2021-03-16	2022-03-15
3	Artificial Mains	R&S	ENV216	101119	2021-06-21	2022-06-20
4	10dB Attenuator	SCHWARZBEC K	MTS-IMP-136	261115-001-0032	2021-06-21	2022-06-20

3.1.2.Block Diagram of Test Setup

3.1.3.Test Standard

Power Line Conducted Emission Limits (Class B)

Frequency			Limit (dBμV)		
(MHz)		Quasi-peak Level Average Level			
0.15	~	0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *	
0.50	~	5.00	56.0	46.0	
5.00	~	30.00	60.0	50.0	

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.1.4.EUT Configuration on Test

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

3.1.5. Operating Condition of EUT

- 3.1.5.1. Setup the EUT as shown on Section 3.1.2
- 3.1.5.2. Turn on the power of all equipments.
- 3.1.5.3.Let the EUT work in measuring test Mode (Working) and measure it.

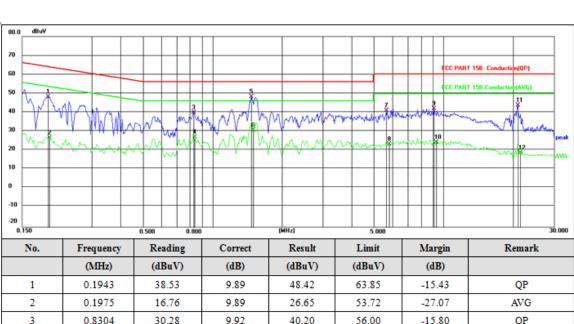
Report No.: LCS210706139AE

3.1.6.Test Procedure

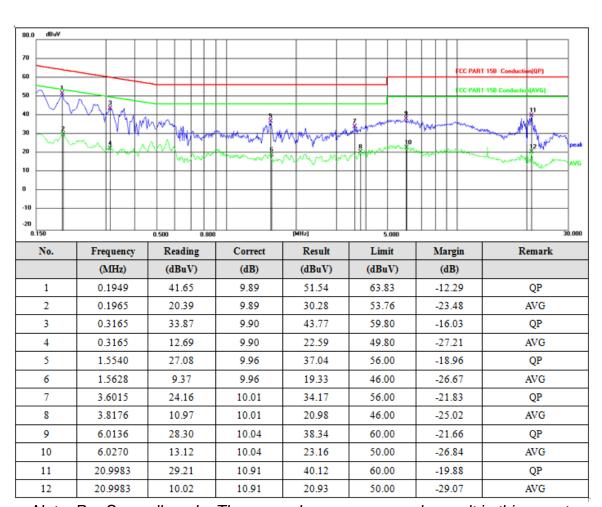
The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC/ANSI C63.4-2014 on Conducted Emission Measurement.

The bandwidth of the test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is investigated 3.1.7.Test Results


PASS.

The test result please refer to the next page.

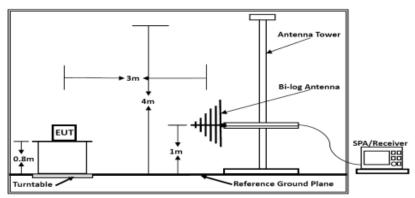


Test Model	FB-500W-60V	Test Mode	Working
Environmental Conditions	22.7℃, 53.7% RH	Test Engineer	Zhang ZePei
Pol	Line	Test Voltage	AC 120V/60Hz

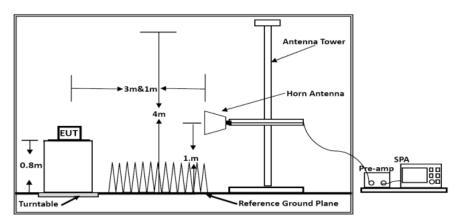
Test Model	FB-500W-60V	Test Mode	Working
Environmental Conditions	22.7℃, 53.7% RH	Test Engineer	Zhang ZePei
Pol	Neutral	Test Voltage	AC 120V/60Hz

Note: Pre-Scan all mode, Thus record worse case mode result in this report.

3.2. Radiated emission Measurement


3.2.1. Test Equipment

The following test equipments are used during the radiated emission measurement:


	<u> </u>							
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date		
1	EMI Test Software	E3	E3-EMC	/	N/A	N/A		
2	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2021-07-25	2024-07-24		
3	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2021-07-01	2024-06-30		
4	EMI Test Receiver	R&S	ESR3	102311	2021-06-21	2022-06-20		
5	Broadband Preamplifier	/	BP-01M18G	P190501	2020-06-22	2021-06-21		

Report No.: LCS210706139AE

3.2.2. Block Diagram of Test Setup

Below 1GHz

Above 1GHz

3.2.3. Radiated Emission Limit (Class B)

Limits for Radiated Disturbance Below 1GHz

Report No.: LCS210706139AE

FREQUENCY	DISTANCE	FIELD STRE	NGTHS LIMIT
MHz	Meters	μV/m	dB(μV)/m
30 ~ 88	3	100	40
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46
960 ~ 1000	3	500	54

Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

	Limits for Radiated Emission Above 1GHz							
Frequency Distance Peak Limit Average Limit								
(MHz) (Meters)			(dBµV/m)	(dBµV/m)				
Above 1000 3 74 54								
	***Note: The lower limit applies at the transition frequency							

3.2.4. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

3.2.5. Operating Condition of EUT

- 3.2.5.1. Setup the EUT as shown in Section 3.2.2.
- 3.2.5.2.Let the EUT work in test Mode (Working) and measure it.

3.2.6. Test Procedure

EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated by-log antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2014 on radiated emission measurement.

3.2.7. Measuring Instruments and Setting

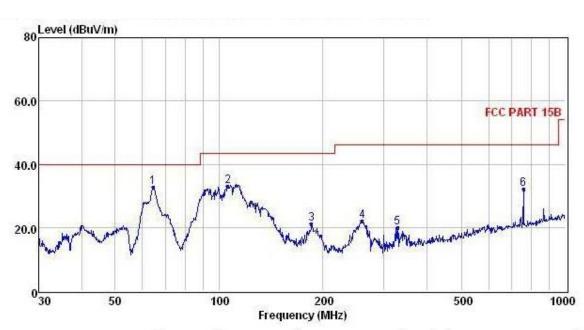
Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver

Report No.: LCS210706139AE

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10 th carrier harmonic		
DD / \/D (Emission in rootristed band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for		
RB / VB (Emission in restricted band)	Average		
DD / \/D (Emission in non-restricted hand)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for		
RB / VB (Emission in non-restricted band)	Average		

The frequency range from 30MHz to 1000MHz and above 1000MHz is checked.

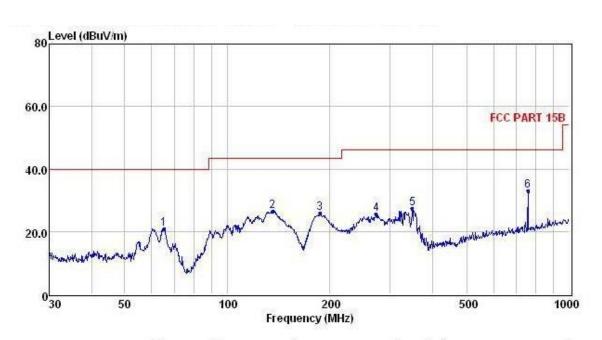

3.2.8. Radiated Emission Noise Measurement Result

PASS.

The scanning waveforms please refer to the next page.

Test Model	FB-500W-60V	Test Mode	Working
Environmental Conditions	22.2℃, 53.3% RH	Detector Function	Quasi-peak
Pol	Vertical	Distance	3m
Test Engineer	HY Luo	Test Voltage	AC 120V/60Hz

Freq Reading CabLos Antfac Measured Limit Over Remark


	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	64.43	21.28	0.52	10.93	32.73	40.00	-7.27	QP
2	106.01	19.77	0.68	12.61	33.06	43.50	-10.44	QP
3	185.14	10.26	0.70	10.13	21.09	43.50	-22.41	QP
4	260.14	9.01	1.01	12.05	22.07	46.00	-23.93	QP
5	329.04	5.21	1.17	13.69	20.07	46.00	-25.93	QP
6	758.04	10.96	1.69	19.54	32.19	46.00	-13.81	QP

Note: 1. All readings are Quasi-peak values.

- 2. Measured= Reading + Antenna Factor + Cable Loss
- 3. The emission that are 20db below the official limit are not reported

Test Model	FB-500W-60V	Test Mode	Working
Environmental Conditions	22.2℃, 53.3% RH	Detector Function	Quasi-peak
Pol	Horizontal	Distance	3m
Test Engineer	HY Luo	Test Voltage	AC 120V/60Hz

Freq Reading CabLos Antfac Measured Limit Over Remark dBuV dB dB/m dBuV/m dBuV/m MHz dB 65.11 9.53 0.52 10.66 20.71 40.00 -19.29 1 QP 2 135.98 17.31 0.70 8.49 26.50 43.50 -17.00QP 3 187.10 14.59 0.98 10.30 25.87 43.50 -17.63 QP 273.23 11.96 12.46 1.04 25.46 46.00 -20.54QP 5 349.25 11.97 1.13 14.26 27.36 46.00 -18.64QP 758.04 11.77 19.54 33.00 46.00 -13.00

Note: 1. All readings are Quasi-peak values.

- 2. Measured= Reading + Antenna Factor + Cable Loss
- 3. The emission that are 20db below the official limit are not reported

Note: Pre-Scan all mode, Thus record worse case mode result in this report.

Remark: For above 1000MHz, Because the emission it too low to be reported.

4. PHOTOGRAPH

Photo of Power Line Conducted Measurement

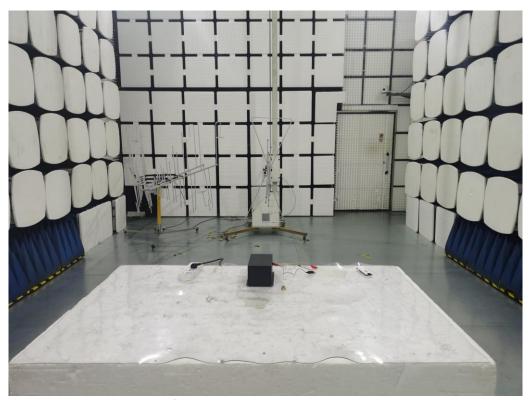


Photo of Radiated emission Measurement

5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Fig. 1

Fig. 2

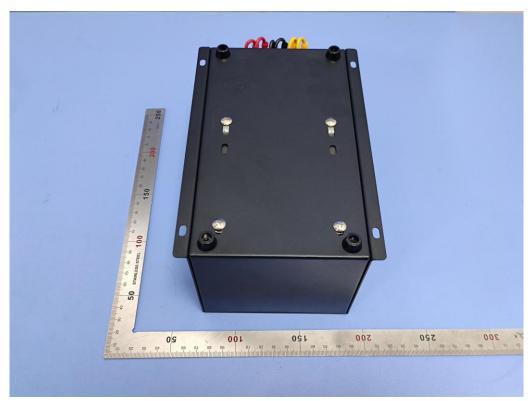


Fig. 3